SELF-HEATING OF A VISCOUS FLUID UNDER CYCLIC DEFORMATION
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The liberation of heat is the most important feature of the deformation process. The thermal flow modes
have been investigated well only in the case of simple shear strain, whence interesting phenomena were detected:
the hydrodynamic analogs of a thermal explosion [1-3], inflammation and extinction [4, 5], ignition [6, 7], non-
isothermal self-oscillatian of viscoelastic fluids [8]. Interest arises in an investigation of the influence of cyclic
deformation on the dissipative heating and its associated phenomena. This question, which has been studied
well for solid polymers [9-12], has practically not been investigated for flow systems although it is of interest
in a number of applied problems of chemical technology (vibration stamping, vibration conveying, ete.) and
viscosimetry, “

1.' The self-heating of flowing systems under cyclic deformation is investigated theoretically in this paper
in the model of a rotation vibration viscosimeter. The nonisothermal shear flow of a Newtonian fluid between
two coaxlal infinite cylinders, one of which rotates at a constant speed while the other performs forcedtangential
vibrations, is examined, The mathematical description of the process contains the motion and heat balance
equations
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where v is the flow velocity, o is the shear stress, T is the temperature, t is the time, ry=r=r,, r{, r; are
the cylinder radii, c is the specific heat, o is the density, q is the dissipation function, T, is the temperature
of the environment, o is the coefficient of heat transfer from the surface, u, is the viscosity for T=T,, and 8
is the temperature coefficient of viscosity,

The Reynolds dependence of the viscosity on the temperature p=u jexp[—g (T—T,)] taken in (1.1) is ob-
tained by expanding the exponent of the Arrhenius dependence p=A exp (B/T) [13] (A and B are constants) by
the Frank—Kamenetskii method [14] under the condition (T—Ty)/Ty< 1. Equation (1.2) assumes the absence
of a temperature distribution over the fluid volume; however, such a model does not lose meaning even in the
presence of a temperature distribution over the volume. In this case (1.2) should be understood as an approxi-
mate temperature relative to the average over the volume,

The boundary conditions in the form
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are of the greatest interest.

In the first case a sinusoidal change in the angular displacement is kept in mind (v is the time derivative
of the displacement, ¢, is the angular displacement amplitude, w is the frequency of oscillation), and a sinusoidal
change in the shear stress in the second case (0y is the mean value of the shear stress and o, is the amplitude
of the oscillations).

Tt is convenient to separate the characteristic times of the problem for the analysis: t;=cp(r,—r;)/2x is
the time of heat elimination, t2=cp/ Bq, is the time of heat liberation, q, is the dissipation function in the station-
ary mode at the temperature T, in the absence of vibrations, t;=27r,/v, is the time of one rotation of the outer
cylinder, t,;=27/w is the period of oscillations, and t; =p(r2—r1)2/u0 is the time of hydrodynamic stabilization.
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Comparing the characteristic times of the processes, we can judge their intensities and make certain
a priori deductions by means of numerical estimates, For strongly viscous fluids it can be assumed that the
hydrodynamic stabilization time is substantially less than all the other times, In this case a stationary equa-
tion of motion can be used whose solution has the form
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(D is the strain rate) for the boundary condition (1.3), and
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for the boundary condition (1.4).

2. Let us consider the problem under the boundary conditions (1,3). By evaluating the dissipation func-
tion we arrive at one heat balance equation
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The essential flow singularities can be clarified from an analysis of the different limit relationships between
the characteristic times. From the viewpoint of the influence of vibration on self-heating, the two limit cases
which are analyzed below are of special interest.

1. Case of "Fast Oscillations" t;>t,. Let us take t,{r =t/t;) as the time scale. Then (2.1) is written as

a8t £y ___.2.-9___ 2.2
Because t;/t,>1, the right side of the equation is a rapidly oscillating function of 7. According to the averag-
ing method [15], the approximate solution (to t4/ t; accuracy) of (2.2) can be obtained from the averaged equation
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The physical meaning of the averaging used is that if a large number of cycles is contained in unit time,

then the temperature change within each cycle, and therefore, the viscosity change also, will be insignificant
and can be considered constant. The solution of (2.3) has a simple structure (Fig. 1, curve 1), As 7T—= if
approaches the stationary value monotonically, which can be found from the relationship

0e0 = 11 (T 1 1), @.4)

This formula displays the influence of the parameter vy, characterizing the oscillation intensity, on the dissipa~
tive heating. In the absence of oscillations (for y=0), this formula agrees with the known formula from [2],
obtained for the computation of the self~heating of a fluid in a simple shear flow.

The solution of (2.2) performs particular oscillations in the background of the solution of the averaged
equation (2.3); the amplitude of these oscillations is hence small (on the order of t,/t;) independently of the
parameter vy,

2. Case of "Strong Heat Elimination” t;<<t,. Let us take t,(r =t,/t,) as the time scale and let us rewrite
(2.1) in the form

t, 40ty —
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Because ti/t4<< 1, the self-heating ® ¢r) varies quasistationarily. This assertion results from the Tikhonov
theorem [16], according to which (2.5) is close (to t;/t, accuracy) to the solution of the degenerate equation
Be® = (t,/t;)(y cos 2t — 1)3,

governing the function © ¢r) which is periodic in 7 with period 1 outside a certain boundary layer abuttingon 7 =0,
The behavior of the solution is different for y=1 (v;=v,) and ¥< 1 (vy<v,) (see Fig, 1, curves 2 and 3). For
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y=1 the heat source is disconnected at individual times when the cylinder velocities are equal, and the heating
drops almost to zero (o ti/t, accuracy) because of the strong heat elimination.

The heat liberation maximums correspond to the extreme positions of the oscillating eylinder, where a
greater value of the heat liberation is reached for oppositely directed cylinder velocities (greater humps on
curves 2 and 3 in Fig, 1), The small humps on the same curves correspond to identically directed cylinder
velocities. For y<1 the heat source is not disconnected and the minimum heating becomes essential:

min® =8,, 0,e8: = ;_1 (1 — )%
2

The mean value of the function ® ¢r) over the period can be found approximately for not very large amplitudes
by solving (2.4). Here the approximate average of the nonlinear function F@) =0 exp ® by means of the formula
[17] {F©®)) =F({(8)).is kept in mind.

The domain of application of the results obtained for the "fast oscillations” and "strong heat elimination”
cases also includes the other limit cases (for instance, t;<<t, and t;< t;) since the asymptotic solutions ob-
tained are valid uniformly in t;/t,, ty/t, in any finite interval of the form [0, M]. Let us note that the limit
relationship t,< t; always corresponds to the adiabatic case described by (2.1) in the absence of heat elimina-
tion, The solution of the adiabatic equation under the initial condition ® (0) =@, has the form
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It hence follows that the adiabatic temperature, which fluctuates, grows logarithmically, An increase in the
frequency diminishes the span of the oscillations and increases the rate of temperature rise,

3. Let us consider the problem under the boundary conditions (1.4). Evaluating the dissipation function
in this case, we arrive at the following form of the heat balance equation:
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Tn this boundary-conditions case the velocity v, does not influence the self-heating, and hence there is no time
t; here,

Without taking account of the periodicity of the source, (3.1) is well known in the theory of a thermal
explosion [14]. Depending on the parameters, the presence of two qualitatively distinct types of solutions,
explosive and nonexplosive, was shown for it. The presence of a periodic time factor in the dissipation func-
tion introduces an essential singularity. By analogy with the previous case, let us consider the fundamental
limit relationships of the characteristic times,
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1. For t;>1, equation (3.1) becomes for the dimensionless time T =t/t,

de 1,/
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Let us again use the method of averaging [15] to solve this equation with a rapidly osecillating right side, To
t4/t1 accuracy, the solution of (3.2) is close to the solution of the averaged equation
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For n<wn, = 1/e the nonexplosive, low-temperature flow mode holds, while for ® >x « & progressive growth of
self~-heating, a hydrodynamic thermal explosion, occurs.

It is interesting to note that the critical condition
2
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contains only amplitude values of the shear stress and does not contain the frequency of oscillation. At the
same time, the critical condition occurring under the cyclic deformation of solid polymers with a given stress
amplitude [9-12] in this same limit case does contain the frequency. This distinction is related to the fact that
the properties of a solid (pliability of loss or modulus of loss) depend on the external deformation parameters
(the frequency) and there is no such dependence for a Newtonian fluid. In the absence of vibrations (y,;=0) the
critical condition (3.3) goes over info the equality %, =t;/t,=1/e, which is well known from the theory of the
thermal explosion. The regularities mentioned are illustrated in Fig, 2, in which curves of the dependence
®{r) are displaced which have been obtained from numerical computations of (3.2) on an electronic computer
(curve 1 corresponds to parameters of the low-temperature domain t;/t,=10.0, ti/t2=().214, v =10, n=
0.32062<",; 2 to the parameters of the explosion domain t;/t;=10.0, t;/t,=0.260, v;=1.0, ®©=0,39141 > e )e

2. For t;<t,, by taking t, as the time scale we arrive at the following equation:

498 _ Uy, sin 2nt + 1)?e® — 6, (3.4)
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Let us consider £(r )= (t;/t,) (v, sin 277 +1)?, for which
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denote the maximum and minimum values, respectively. According to the Tikhonov theory [16], for f1< 1/e the
periodic heating ® ) is set up to t;/t, accuracy, which has been defined as the smaller root of the equation

8= =1 (3, sin 27 + 1)7, (3.5)

If f;> 1/e (this is possible for 1< 1), then a quasistationary solution is not possible. Physically this means a
hydrodynamic thermal explosion, According to (3.5) a quasistationary solution exists in the intermediate
regimes for f; > 1/e > fy but only on specific sections of the variation in T (for fr)<1/e). There is no such
solution for f¢r) > 1/e). A numerical analysis of (3.4) showed that an explosive mode is also characteristic
for this domain. Results of a numerical computation are presented in Fig., 3. Curve 1 corresponds to the
nonexplosive domain of parameters ¢1/t4=0.10, tl/t2=0.100, v1=0.5, t.e., f1< 1/e), 2 to the transition domain
(t1/t,=0.25, t,/1,=0.421, v =0.5, i.e., f; > 1/e > f,=0,2625), In the limit as (t,/t,) — 0, the eritical condition of
the explosion is expressed by the formula

A=Bdtnr =1

Let us note that this critical condition is associated with disruption of the maximum tempe rature, while it is
determined by the disruption of the mean temperature in the limit case of "fast oscillations" (see (3.3)).

The period of induction of the explosion T; can be defined as the time of the first disruption of the quasi~
stationary solution in the domain

L/t < e, fy > 1le (3.6)
i.e., as the least solution of the equation f¢r) =1/e. Taking account of T =ti/t4 this yields

ti= gyaeein [y & — ). 6

89



It follows from the formula that the period of induction for the case (t;/t)) — 0 is much less than the period of
the oscillations, Hence, disruption of the temperature occurs within the first cycle, and condition (3.6) defines
the explosion domain, For t;/t,> 1/e formula (3,7) does not define the period of induction. Within the frame-
work of the assumption made about the smallness of t;/t,, this means that 7; —O(ti/t4)

Let us note that, as in Sec. 2, the asymptotic solutions obtained are also valid for other limit cases. In
the adiabatic case (t,<ty), we have for 8(0)=8,

2
e~0=g—6 — —[(1 + )t -+ 2—2;—‘(1 — cos of) —Z—:Dsin 20>t].

The present examination is directed towards studying the qualitative regularities of the self-heating of
flowing systems under cyclic deformation. To this end, the simplest model of a Newtonian fluid was selected,
whose properties are independent of the vibration parameters, From the viewpoint of determining the rheologi-
cal properties of a fluid from dynamic tests, the investigation of self-heating of non-Newtonian fluids, whose
properties, besides the temperature, can also depend on the oscillation frequency, is of interest,

LITERATURE CITED

1. S. A, Bostandzhiyan, A. G. Merzhanov, and S. L. Khudyaev, "On a hydrodynamic thermal explosion,”
Dokl. Akad. Nauk SSSR, 163, No. 1 (1965).
2. A. G. Merzhanov and A, M Stolin, "On the thermal theory of viscous fluid flow," Dokl, Akad, Nauk SSSR,
198, No, 6 (1971).
3. A, G. Merzhanov, A, P, Posetsel'skii, A. M. Stolin, and A. S, Shteinberg, "Experimental realization of a
hydrodynamic thermal explosion," Dokl. Akad. Nauk SSSR, 210, No. 1 (1973).
4. A, G, Merzhanov and A, M, Stolin, "Hydrodynamic analogs of inflammation and extinction phenomena, "
Prikl. Mekh, Tekh, Fiz., No. 1 (1974).
5. A. M. Stolin and V. 1. Klevkov, "On hydrodynamic thermal phenomena of the inflammation and extinction
type," in: Combustion of Condensed Systems [in Russian], Chernogolovka (1977).
6. A, M, Grishin, V, B. Nemirovskii, and V. F, Panin, "Influence of the heat of friction on the inflammation
characteristics in the flow of a viscous reactive fluid in a circular pipe," Fiz. Goreniya Vzryva, 13, No,
2 (1977).
7. Zh. A, Zinenko, A, M, Stolin, and F. A. Khrisostomov, "Thermal modes of Couette viscous fluid flow,"
Prikl, Mekh. Tekh, Fiz., No. 3 (1977).
8. A, M. Stolin and 8. 1. Khudyaev, "Nonisothermal instability of the flow of viscoelastic media," Dokl.
Akad, Nauk SSSR, 207, No. 1 (1972).
9. S.B.Ratner and V. L. Korobov, "Self-heating of polymers under multiple deformation," Dokl. Akad. Nauk
SSSR, 161, No. 4 (1965).
10. S. B. Ratner and V. I. Korobov, "Self-heating of plastics under cyclic deformation,"” Mekh. Polim., No, 3
(1965).
11. G. 1. Barenblatt, Yu. . Kozyrev, N. I. Malinin, D. Ya. Pavlov, and S, A, Shesterikov, "On the vibration
creep of polymer materials,” Dokl, Akad. Nauk SSSR, 166, No. 4 (1966).
12. G. L Barenblatt, Yu, I. Kozyrev, N. L. Malinin, D. Ya. Pavlov, and S. A, Shesterikov, "On the vibration
creep of polymer materials,” Prikl. Mekh, Tekh. Fiz., No. 5 (1965).
13. Ya. I Frenkel', Kinetic Theory of Fluids [in Russian], Nauka, Leningrad (1975).
14, D, A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics [in Russian], Nauka, Mos-
cow (1967).
15. N. N, Bogolyubov and Yu. A. Mitropol'skii, Asymptotic Methods in the Theory of Nonlinear Oscillations
[in Russian], Gostekhizdat, Moscow (1855),
16. A. N. Tikhonov, "Systems of differential equations containing small parameters in the derivatives," Mat.
Sb., 31, No. 3 (1952).
17, A.1. Vol'pert and S. I, Khudyaev, Analysis in Classes of Discontinuous Functions and Equations of
Mathematical Physics [in Russian], Nauka, Moscow (1975).

90



