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The l ibe ra t ion  of heat  is the m o s t  impor tan t  f ea tu re  of the de format ion  p r o c e s s .  The t h e r m a l  flow modes  
have  been  inves t igated well  only in the c a s e  of s imple  s h e a r  s t ra in ,  whence in te res t ing  phenomena  were  detected:  
the hydrodynamic  analogs  of a t h e r m a l  explosion [1-3], in f lammat ion  and extinction [4, 5], ignition [6, 7], non- 
i s o t h e r m a l  s e l f - o s c i l l a t i m  of v i scoe las t i c  fluids [8]. I n t e r e s t  a r i s e s  in an invest igat ion of the influence of cycl ic  
de format ion  on the d iss ipa t ive  heating and i ts  a s soc ia ted  phenomena.  This  question,  which has been studied 
well  for  solid p o l y m e r s  [9-12], has p rac t i ca l ly  not been  inves t igated for  flow s y s t e m s  although it is of in te res t  
in a number  of applied p r o b l e m s  of chemica l  technology (vibration s tamping,  v ibra t ion  conveying, etc.) and 
v i s c o s i m e t r y .  

1 .  The se l f -hea t ing  of flowing s y s t e m s  under  cycl ic  de format ion  is invest igated theore t ica l ly  in this p a p e r  
in the model  of a ro ta t ion  v ibra t ion  v i s c o s i m e t e r .  The non i so the rmal  s h e a r  flow of a Newtonian fluid between 
two coaxial  infinite cy l inders ,  one of which ro ta tes  at  a constant  speed while the o ther  p e r f o r m s  fo rced tangen t ia l  
v ibra t ions ,  is examined.  The m a t h e m a t i c a l  desc r ip t ion  of the p r o c e s s  contains the mot ion  and heat balance 
equations 

a ( v )  (1.1) Ov i 0 (r'(~), [~ --~ ~ toe -~(T- - ro ) r  ~ - 7  ; 
POt r~ dr 
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where  v is the flow veloci ty ,  a is the s h e a r  s t r e s s ,  T is the t e m p e r a t u r e ,  t is the t ime ,  r t-< r -  < r2, ri ,  r 2 a r e  
the cyl inder  radi i ,  c is the specif ic  heat,  p is the densi ty,  q is the d iss ipa t ion  function, T O is the t e m p e r a t u r e  
of the envi ronment ,  a is the coeff ic ient  of heat  t r a n s f e r  f rom the su r face ,  ~0 is the v i scos i ty  for  T =T 0, and fl 
is the t e m p e r a t u r e  coeff ic ient  of v i scos i ty .  

The Reynolds dependence of the v i scos i ty  on the t e m p e r a t u r e  ~ =~ 0exp[ -B  (T--T0)] taken in (1.1) is ob- 
tained by expanding the exponent of the Ar rhen ius  dependence / J=A exp (B/T) [13] (A and B a r e  constants)  by 
the F r a n k - K a m e n e t s k i i  method [14] under  the condition (T--T0)/T0<< 1. Equation (1.2) a s s u m e s  the absence  
of a t e m p e r a t u r e  d is t r ibut ion  o v e r  the fluid volume;  however ,  such a model  does not lose  meaning even in the 
p r e s e n c e  of a t e m p e r a t u r e  d is t r ibut ion  o v e r  the volume.  In this  ca se  (1.2) should be unders tood as an approxi -  
m a t e  t e m p e r a t u r e  re la t ive  to the a v e r a g e  o v e r  the volume.  

The boundary conditions in the f o r m  

r = r I v ---- ri~ococos cot = vicos cot, r = r+ v = v . , ;  (1.3) 

r = r 1 a = ai -4-aosin cot, r = r, v = v~. (1.4) 

a re  of the g r e a t e s t  in te res t .  

In the f i r s t  c a se  a s inusoidal  change in the angula r  d i sp lacement  is kept  in mind (v is the t ime  der iva t ive  
of the d isp lacement ,  % is  the angu la r  d i sp lacemen t  amplitude,  co is the f requency of osci l lat ion),  and a sinusoidal  
change in the s h e a r  s t r e s s  in the second case  (a t is the m e a n  value of the shear  s t r e s s  and ~0 is the ampli tude 
of the osci l la t ions) .  

It is convenient  to s e p a r a t e  the c h a r a c t e r i s t i c  t imes  of the p rob lem fo r  the ana lys i s :  t I = c p ( r 2 - r l ) / 2 ~  is 
the t ime  of heat  e l iminat ion,  t 2 = c P / f l q  o is the t ime  of heat  l iberat ion,  q0 is the d iss ipat ion function in the s ta t ion-  
a ry  mode  at the t e m p e r a t u r e  T O in the absence  of v ibra t ions ,  t 3 = 2~rr2/v 2 is the t ime  of one ro ta t ion  of the outer  
cyl inder ,  t 4 = 2~r/w is the per iod  of osc i l la t ions ,  and t 5 =p (r2-rl)2/~0 is the t ime  of hydrodynamic  s tabi l izat ion.  
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Compar ing  the c h a r a c t e r i s t i c  t imes  of the p r o c e s s e s ,  we can  judge t h e i r  intensi t ies  and make  ce r t a in  
a p r i o r i  deductions by means  of numer i ca l  e s t i m a t e s .  F o r  s t rongly  v iscous  fluids it can be a s sumed  that  the 
hydrodynamic  s tabi l iza t ion t ime  is subs tant ia l ly  l e s s  than all the other  t imes .  In this case  a s ta t ionary  equa-  
t ion of mot ion  can  be used whose solut ion has  the f o r m  

) (  1 r t r~,) 
v = (v, --  vl cos cot y-:_ ~/-r~)-' r-1 ( r ~ / r t ) "  - -  1 r ' 

D = r - ~ r  = 2  r~-'~-- r-2 2 r~ 

(D is the s t r a i n  ra te)  for  the boundary condit ion (1.3), and 

/ § t o 1 + % sin o)t e~(T_T,) ( ~ __ , 
Y2 + 

r ~  2 tto \ r2 

z = (r + % " t smcot) 

for  the boundary condition (1.4). 

2. Let  us cons ide r  the p r o b l e m  under  the boundary conditions (1.3). 
t ion we a r r i v e  at one heat  ba lance  equat ion 

dO _ I (?coscot l)~e_O_ t~_O ~ 
dt t~ 

By evaluating the d iss ipat ion func- 

(2A) 

- -  . e=p(T-- r0) ,  v=.~  ~, t~ cp%=c~(r~=r~)r~ 

The essen t i a l  flow s ingula r i t i es  can  be c la r i f i ed  f r o m  an analys is  of the different  l imi t  re la t ionships  between 
the c h a r a c t e r i s t i c  t imes .  F r o m  the viewpoint of the influence of v ibra t ion  on se l f -heat ing ,  the two l imit  c a se s  
which a re  analyzed below a re  of spec ia l  in te res t .  

1. Case  of "Fas t  Osc i l la t ions"  tl>>t4. Let  us take  t4{r =t/t4) as the t ime  sca le .  Then (2.1) is wr i t t en  as 

dO tl (y cos t, )2 (2.2) 

Because  tl / t4>>l,  the r ight  side of the equation is a rapidly osci l la t ing function of r .  According to the a v e r a g -  
ing method [15], the approx imate  solution (to t J t  1 accuracy)  of (2.2) can be obtained f r o m  the averaged  equation 

d~ t~ + 1 e - ~  --  0. 

The phys ica l  meaning  of the averag ing  used is that  if a l a rge  number  of cyc les  is contained in unit t ime,  
then the t e m p e r a t u r e  change within each cycle ,  and the re fo re ,  the v i scos i ty  change also,  will be insignif icant  
and can  be cons idered  constant .  The solut ion of (2.3) has a s imple  s t r u c t u r e  (Fig. 1, cu rve  1). As ~ ~ it 
approaches  the s t a t ionary  value monotonical ly ,  which can he found f r o m  the re la t ionship  

t, { v~ l). (2.4) Oee = ~ k--~- + 

This  fo rmula  d i sp lays  the influence of the p a r a m e t e r  T, cha r ac t e r i z i ng  the osci l la t ion intensity,  o n  the d i s s ipa -  
t ive  heating.  In the abse,'~ce of osci l la t ions  (for T=0) ,  this  fo rmula  ag r ee s  with the known fo rmula  f rom [2], 
obtained for  the computa t ion  of the se l f -hea t ing  of a fluid in a s imple  s h e a r  flow. 

The solution of (2.2) p e r f o r m s  p a r t i c u l a r  osc i l la t ions  in the background of the solution of the averaged  
equation (2.3); the ampli tude of these  osci l la t ions  is hence sma l l  (on the o r d e r  of t4/tl) independen~:ly of the 
p a r a m e t e r  T. 

2, Case  of "Strong Heat  El iminat ion"  tl<<t 4. Let  us take taft = t l / t4)as the t ime  sca l e  and let  us rewr i te  
(2.1) in the f o r m  

t~ d e  t ,  , ~ ~ ( 2 . 5 )  
t 4 d'f ~--- ~ [~ CO~ ~n~: - -  l )  2 e - e - -  O. 

Because  tl/tt<< 1, the se l f -hea t ing  0 0") va r i e s  quas i s t a t ionar i ly .  This  a s s e r t i o n  r e su l t s  f rom the Tikhonov 
t h e o r e m  [16], accord ing  to which (2.5) is c lose  {to t i / t  4 accuracy)  to the solution of the degenera te  equation 

Oe o = (tl/t2)(y cos 2 ~  - -  1) ~-, 

governing the function @ (r) which is per iodic  in ~" with per iod  i outside a ce r ta in  boundary l aye r  abutting on r = 0. 
The behav io r  of the solut ion is dif ferent  for  T->I ( v i -  > v 2) and y< 1 (vl<v2) (see Fig. 1, cu rves  2 and 3). For  
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Fig. 1 
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Fig. 3 

T->l the heat  sou rce  is d isconnected at individual t i m e s  when the cy l inder  ve loci t ies  a r e  equal, and the heating 
d rops  a lmos t  to ze ro  (to t l / t  4 accuracy)  because  of the s t rong heat  e l iminat ion.  

The heat  l ibera t ion  m a x i m u m s  co r r e spond  to the e x t r e m e  posi t ions  of the osci l la t ing cyl inder ,  where  a 
g r e a t e r  value of the heat  l ibera t ion  is reached  fo r  opposi te ly  d i rec ted  cy l inder  veloci t ies  (grea te r  humps on 
cu rves  2 and 3 in Fig. 1). The sma l l  humps on the s a m e  curves  co r r e spond  to identical ly d i rec ted  cyl inder  
ve loc i t ies .  For  T< 1 the hea t  source  is not d isconnected and the m i n i m u m  heating becomes  essen t ia l :  

t ,  ( I  - -  ~)~-, m i n@ =Ot ,  Ole ~  

The mean  value of the function |  o v e r  the per iod  can be found approx imate ly  fo r  not ve ry  la rge  ampli tudes  
by solving (2.4). Here  the approx imate  ave r age  of the nonl inear  function F(|174 exp|  by means  of the fo rmula  
[17] (F(| = F ( ( |  kept in mind.  

The domain of applicat ion of the r e s u l t s  obtained for  the " fas t  osc i l la t ions"  and "s t rong  heat e l iminat ion"  
cases  a lso  includes the other  l imi t  c a se s  (for instance,  tl<< t 2 and t3<< t 4) s ince the asympto t ic  solutions ob- 
tained a r e  valid un i formly  in tl/ t2, t3/ t  4 in any finite in terval  of the f o r m  [0, M]. Let  us note that  the l imit  
re la t ionship  t2<< t 1 a lways co r r e sponds  to the adiabat ic  case  desc r ibed  by (2.1) in the absence  of heat  e l imina -  
tion. The solution of the adiabatic  equat ion under  the initial condition | (0) =00 has the f o r m  

~ 2r sin (st). ~ (t+~2-~t+ sin e| = coo + ~ ~ 

It hence follows that  the adiabat ic  t e m p e r a t u r e ,  which f luctuates,  grows logar i thmica l ly .  An inc rease  in the 
f requency d iminishes  the span of the osci l la t ions  and i n c r e a s e s  the ra te  of t e m p e r a t u r e  r i s e .  

3. Let  us cons ide r  the p r o b l e m  under  the boundary conditions (1.4). Evaluat ing the d iss ipat ion function 
in this case ,  we a r r i v e  at the following f o r m  of the heat  ba lance  equation: 

dOdt - -  tot (~lsine0 t + l)~e e _ t ~ O ,  (3.1) 

-2%,  t ~ ~ ~ 2 
O = f i ( r - - Y o ) ,  ~ l - - ~  t--~=~--~-qo cp 22 �9 rir2~t0 

In this boundary-condi t ions  c a s e  the veloci ty  v 2 does not influence the se l f -hea t ing ,  and hence t he r e  is no t i m e  
t 3 he re .  

Without taking account of the per iodic i ty  of the source ,  (3.1) is well  known in the theory  of a t h e r m a l  
explosion [14]. Depending on the p a r a m e t e r s ,  the p r e s e n c e  of two qual i ta t ively dis t inct  types  of solutions,  
explosive and nonexplosive,  was shown for  it. The p r e s e n c e  of a per iodic  t ime  f ac to r  in the d iss ipat ion func- 
t ion introduces an e s sen t i a l  s ingular i ty .  By analogy with the p rev ious  case ,  let  us cons ider  the fundamental  
l imi t  re la t ionships  of the c h a r a c t e r i s t i c  t i m e s .  
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1. F o r  tl>>t 4 equation (3.1) b e c o m e s  fo r  the d imens ion less  t ime  ~" = t / t  1 

dO _ t~ r tt )2 eO (3.2) 
d--~ -- t-~ !~1 sin 2~ ~ �9 ~ I --  O. 

Let  us again use  the method of averaging  [15] to solve this equat ion with a rapidly osci l la t ing r ight  side.  To 
t t / t  1 accuracy ,  the solution of (3.2) is c lose  to the solution of the averaged  equation 

d'r - •  •  3 t . ,  

For  >t < ~ .  = 1/e  the nonexplosive,  l o w - t e m p e r a t u r e  flow mode holds, while fo r  ~ >>~,  a p r o g r e s s i v e  growth of 
se l f -hea t ing ,  a hydrodynamic  t h e r m a l  explosion,  occurs .  

It is in te res t ing  to note that  the c r i t i ca l  condition 

•  = T  (3.3) 

contains only ampli tude values of the shea r  s t r e s s  and does not contain the f requency  of osci l la t ion.  At the 
s ame  t ime ,  the c r i t i ca l  condition occur r ing  under  the cycl ic  de fo rmat ion  of solid p o l y m e r s  with a given s t r e s s  
ampli tude [9-12] in this s a m e  l imi t  case  does contain the f requency.  This  dis t inct ion is re la ted  to the fact  that  
the p r o p e r t i e s  of a solid (pliability of loss  or  modulus  of loss)  depend on the ex te rna l  de fo rma t ion  p a r a m e t e r s  
(the f requency)  and the re  is no such dependence fo r  a Newtonian fluid. In the absence  of v ibra t ions  (3/1 = 0) the 
c r i t i ca l  condit ion (3.3) goes  o v e r  into the equal i ty n ,  = t t / t  2 = l / e ,  which is well  known f r o m  the theory  of the 
t he rma l  explosion.  The r egu la r i t i e s  ment ioned a re  i l lus t ra ted  in Fig. 2, in which cu rves  of the dependence 
|  a r e  displaced which have been obtained f r o m  n u m e r i c a l  computat ions  of (3.2) on an e lec t ron lc  c o m p u t e r  
(curve 1 c o r r e s p o n d s  to p a r a m e t e r s  of the l o w - t e m p e r a t u r e  domain t l / t  4 = 10.0, t t / t 2=  0.214, I/1 =1.0, ~ = 
0.32062 < n ,  ; 2 to the p a r a m e t e r s  of the explos ion domain t i / t  4 = 10.0, t i / t  2 = 0.260, 3'1 = 1.0, n = 0.39141 > ~ , ) .  

2. Fo r  it<< t4, by taking t 4 as the t ime  sca le  we a r r i v e  at the following equation: 

t 1 dO --  t 1 (71 sin 2 ~  4- i) "2 e e - -  O. (3.4) 
ta d~ t$ 

Let  us cons ide r  f f f  ) = (it/t2) ('y 1 s in 2r r  +1) 2, f o r  which 

I(tl/t2) (i - -  71)2, 71 < i~ 
h=~(t+w)  ~, Io=(0, ?1~t 

denote the m a x i m u m  and m i n i m u m  values,  r e spec t ive ly .  According to the Tikhonov theory  [16], for  fl < 1/e  the 
per iodic  heating @ (r) is se t  up to t l / t  a accuracy ,  which has been defined as the s m a l l e r  root  of the ~iuat ion 

- -  ~ ( 3 . 5 )  Oe-e -- ~ (71 sin 2 ~  -b i) ~. 

If f0 > 1/e  (this is poss ib le  for  3/1 < 1), then a quas i s t a t iona ry  solut ion is not poss ib le .  Phys ica l ly  this means  a 
hydrodynamic  t h e r m a l  explosion.  According to (3.5) a quas i s t a t iona ry  solution ex is t s  in the in te rmedia te  
r e g i m e s  for  fl > 1 /e  > fo but only on speci f ic  sec t ions  of the var ia t ion  in �9 (for fff)  < l / e ) .  T h e r e  is no such 
solution for  f('r) > l / e ) .  A numer ica l  ana lys is  of (3.4) showed that an explosive  mode  is also c h a r a c t e r i s t i c  
for this domain.  Resul ts  of a numer i ca l  computa t ion  are  p r e sen t ed  in Fig. 3. Curve  i c o r r e s p o n d s  to the 
nonexplosive domain of p a r a m e t e r s  (t i / t  4 = 0.10, t i / t  2 = 0.100, 3'1 = 0.5, i .e. ,  fl < l / e ) ,  2 to the t r ans i t ion  domain 
(tl/t  4 -  0.25, t l / t  2 = 0.421, 5'2 = 0.5, i .e . ,  fl > 1/e  > f0 = 0.2625). In the l imi t  as (it/ t4)-* 0, the c r i t i c a l  condition of 
the explosion is e x p r e s s e d  by the fo rm u l a  

h = ~ = T  

Let  us note that  this c r i t i ca l  condition is a s soc ia ted  with d isrupt ion of the m a x i m u m  t e m p e r a t u r e ,  while it is 
de te rmined  by the d is rupt ion  of the mean  t e m p e r a t u r e  in the l imi t  c a se  of tVfast osci l la t ions  Tt (see (3.3)). 

The per iod  of induction of the explosion T i can  be defined as the t ime  of the f i r s t  disr~dption of the quas i -  
s t a t ionary  solut ion in the domain 

t l / t  z <( l/e, f~ ~ l/e (3,6) 

i .e . ,  as  the l e a s t  solut ion of the equation f(r) = l / e .  Taking account  of ~i = t i / t t  this  y ie lds  

t i = ~ arcsin ~( ] / -  t _ ~ [ . \  t,e - -  ~)/?t] .  (3.7) 
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It follows from the formula that the period of induction for the case (tl/t 4) --  0 is much less than the period of 
the oscillations. Hence, disruption of the temperature  occurs within the f irs t  cycle, and condition (3.6) defines 
the explosion domain. For  t l / t  2 > 1/e formula (3.7) does not define the period of induction. Within the f rame-  
work of the assumption made about the smallness of t l / t  4, this means that Ti=O{t~/t4). 

Let us note that, as in Sec. 2, the asymptotic solutions obtained are also valid for other limit cases.  In 
the adiabatic case (t2<<tl), we have for |174 0 

The present  examination is directed towards studying the qualitative regularit ies of the self-heating of 
flowing systems under cyclic deformation. To this end, the simplest model of a Newtonian fluid was selected, 
whose propert ies  are independent of the vibration parameters .  From the viewpoint of determining the rheologi- 
cal propert ies  of a fluid from dynamic tests ,  the investigation of self-heating of non~Newtonian fluids, whose 
propert ies ,  besides the temperature ,  can also depend on the oscillation frequency, is of interest.  
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